1,156 research outputs found

    Simulation of the deflected cutting tool trajectory in complex surface milling

    Get PDF
    Since industry is rapidly developing, either locally or globally, manufacturers witness harder challenges due to the growing competitivity. This urges them to better consider the four factors linked to production and output: quality, quantity, cost and price, quality being of course the most important factor which constitutes their main concern. Efforts will be concentrated—in this research—on improving the quality and securing more accuracy for a machined surface in ball-end milling. Quality and precision are two essential criteria in industrial milling. However, milling errors and imperfections, duemainly to the cutting tool deflection, hinder the full achieving of these targets. Our task, all along this paper, consists in studying and realizing the simulation of the deflected cutting tool trajectory, by using the methods which are available. In a future stage, and in the frame of a deeper research, the simulation process will help to carry out the correction and the compensation of the errors resulting from the tool deflection. The corrected trajectory which is obtained by the method mirror will be sent to the machine. To achieve this goal, the next process consists—as a first step—in selecting a model of cutting forces for a ball-end mill. This allows to define—later on—the behavior of this tool, and the emergence of three methods namely the analytical model, the finite elements method, and the experimental method. It is possible to tackle the cutting forces simulation, all along the tool trajectory, while this latter is carrying out the sweeping of the part to be machined in milling and taking into consideration the cutting conditions, as well as the geography of the workpiece. A simulation of the deflected cutting tool trajectory dependent on the cutting forces has been realized

    Selective Constraints on Amino Acids Estimated by a Mechanistic Codon Substitution Model with Multiple Nucleotide Changes

    Get PDF
    Empirical substitution matrices represent the average tendencies of substitutions over various protein families by sacrificing gene-level resolution. We develop a codon-based model, in which mutational tendencies of codon, a genetic code, and the strength of selective constraints against amino acid replacements can be tailored to a given gene. First, selective constraints averaged over proteins are estimated by maximizing the likelihood of each 1-PAM matrix of empirical amino acid (JTT, WAG, and LG) and codon (KHG) substitution matrices. Then, selective constraints specific to given proteins are approximated as a linear function of those estimated from the empirical substitution matrices. Akaike information criterion (AIC) values indicate that a model allowing multiple nucleotide changes fits the empirical substitution matrices significantly better. Also, the ML estimates of transition-transversion bias obtained from these empirical matrices are not so large as previously estimated. The selective constraints are characteristic of proteins rather than species. However, their relative strengths among amino acid pairs can be approximated not to depend very much on protein families but amino acid pairs, because the present model, in which selective constraints are approximated to be a linear function of those estimated from the JTT/WAG/LG/KHG matrices, can provide a good fit to other empirical substitution matrices including cpREV for chloroplast proteins and mtREV for vertebrate mitochondrial proteins. The present codon-based model with the ML estimates of selective constraints and with adjustable mutation rates of nucleotide would be useful as a simple substitution model in ML and Bayesian inferences of molecular phylogenetic trees, and enables us to obtain biologically meaningful information at both nucleotide and amino acid levels from codon and protein sequences.Comment: Table 9 in this article includes corrections for errata in the Table 9 published in 10.1371/journal.pone.0017244. Supporting information is attached at the end of the article, and a computer-readable dataset of the ML estimates of selective constraints is available from 10.1371/journal.pone.001724

    Past Achievements and Future Challenges in 3D Photonic Metamaterials

    Full text link
    Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallo-dielectric sub-wavelength building blocks that are densely packed into an effective material. This deceptively simple, yet powerful, truly revolutionary concept allows for achieving novel, unusual, and sometimes even unheard-of optical properties, such as magnetism at optical frequencies, negative refractive indices, large positive refractive indices, zero reflection via impedance matching, perfect absorption, giant circular dichroism, or enhanced nonlinear optical properties. Possible applications of metamaterials comprise ultrahigh-resolution imaging systems, compact polarization optics, and cloaking devices. This review describes the experimental progress recently made fabricating three-dimensional metamaterial structures and discusses some remaining future challenges

    Multicore and FPGA implementations of emotional-based agent architectures

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-014-1307-6.Control architectures based on Emotions are becoming promising solutions for the implementation of future robotic agents. The basic controllers of the architecture are the emotional processes that decide which behaviors of the robot must activate to fulfill the objectives. The number of emotional processes increases (hundreds of millions/s) with the complexity level of the application, reducing the processing capacity of the main processor to solve complex problems (millions of decisions in a given instant). However, the potential parallelism of the emotional processes permits their execution in parallel on FPGAs or Multicores, thus enabling slack computing in the main processor to tackle more complex dynamic problems. In this paper, an emotional architecture for mobile robotic agents is presented. The workload of the emotional processes is evaluated. Then, the main processor is extended with FPGA co-processors through Ethernet link. The FPGAs will be in charge of the execution of the emotional processes in parallel. Different Stratix FPGAs are compared to analyze their suitability to cope with the proposed mobile robotic agent applications. The applications are set up taking into account different environmental conditions, robot dynamics and emotional states. Moreover, the applications are run also on Multicore processors to compare their performance in relation to the FPGAs. Experimental results show that Stratix IV FPGA increases the performance in about one order of magnitude over the main processor and solves all the considered problems. Quad-Core increases the performance in 3.64 times, allowing to tackle about 89 % of the considered problems. Quad-Core has a lower cost than a Stratix IV, so more adequate solution but not for the most complex application. Stratix III could be applied to solve problems with around the double of the requirements that the main processor could support. Finally, a Dual-Core provides slightly better performance than stratix III and it is relatively cheaper.This work was supported in part under Spanish Grant PAID/2012/325 of "Programa de Apoyo a la Investigacion y Desarrollo. Proyectos multidisciplinares", Universitat Politecnica de Valencia, Spain.Domínguez Montagud, CP.; Hassan Mohamed, H.; Crespo, A.; Albaladejo Meroño, J. (2015). Multicore and FPGA implementations of emotional-based agent architectures. Journal of Supercomputing. 71(2):479-507. https://doi.org/10.1007/s11227-014-1307-6S479507712Malfaz M, Salichs MA (2010) Using MUDs as an experimental platform for testing a decision making system for self-motivated autonomous agents. Artif Intell Simul Behav J 2(1):21–44Damiano L, Cañamero L (2010) Constructing emotions. Epistemological groundings and applications in robotics for a synthetic approach to emotions. In: Proceedings of international symposium on aI-inspired biology, The Society for the Study of Artificial Intelligence, pp 20–28Hawes N, Wyatt J, Sloman A (2009) Exploring design space for an integrated intelligent system. Knowl Based Syst 22(7):509–515Sloman A (2009) Some requirements for human-like robots: why the recent over-emphasis on embodiment has held up progress. Creat Brain Like Intell 2009:248–277Arkin RC, Ulam P, Wagner AR (2012) Moral decision-making in autonomous systems: enforcement, moral emotions, dignity, trust and deception. In: Proceedings of the IEEE, Mar 2012, vol 100, no 3, pp 571–589iRobot industrial robots website. http://www.irobot.com/gi/ground/ . Accessed 22 Sept 2014Moravec H (2009) Rise of the robots: the future of artificial intelligence. Scientific American, March 2009. http://www.scientificamerican.com/article/rise-of-the-robots/ . Accessed 14 Oct 2014.Thu Bui L, Abbass HA, Barlow M, Bender A (2012) Robustness against the decision-maker’s attitude to risk in problems with conflicting objectives. IEEE Trans Evolut Comput 16(1):1–19Pedrycz W, Song M (2011) Analytic hierarchy process (AHP) in group decision making and its optimization with an allocation of information granularity. IEEE Trans Fuzzy Syst 19(3):527–539Lee-Johnson CP, Carnegie DA (2010) Mobile robot navigation modulated by artificial emotions. IEEE Trans Syst Man Cybern Part B 40(2):469–480Daglarli E, Temeltas H, Yesiloglu M (2009) Behavioral task processing for cognitive robots using artificial emotions. Neurocomputing 72(13):2835–2844Ventura R, Pinto-Ferreira C (2009) Responding efficiently to relevant stimuli using an emotion-based agent architecture. Neurocomputing 72(13):2923–2930Arkin RC, Ulam P, Wagner AR (2012) Moral decision-making in autonomous systems: enforcement, moral emotions, dignity, trust and deception. Proc IEEE 100(3):571–589Salichs MA, Malfaz M (2012) A new approach to modeling emotions and their use on a decision-making system for artificial agents. Affect Comput IEEE Trans 3(1):56–68Altera Corporation (2011) Stratix III device handbook, vol 1–2, version 2.2. http://www.altera.com/literature/lit-stx3.jsp . Accessed 14 Oct 2014.Altera Corporation (2014) Stratix IV device handbook, vol 1–4, version 5.9. http://www.altera.com/literature/lit-stratix-iv.jsp . Accessed 14 Oct 2014.Naouar MW, Monmasson E, Naassani AA, Slama-Belkhodja I, Patin N (2007) FPGA-based current controllers for AC machine drives: a review. IEEE Trans Ind Electr 54(4):1907–1925Intel Corporation (2014) Desktop 4th generation Intel Core Processor Family, Desktop Intel Pentium Processor Family, and Desktop Intel Celeron Processor Family, Datasheet, vol 1, 2March JL, Sahuquillo J, Hassan H, Petit S, Duato J (2011) A new energy-aware dynamic task set partitioning algorithm for soft and hard embedded real-time systems. Comput J 54(8):1282–1294Del Campo I, Basterretxea K, Echanobe J, Bosque G, Doctor F (2012) A system-on-chip development of a neuro-fuzzy embedded agent for ambient-intelligence environments. IEEE Trans Syst Man Cybern Part B 42(2):501–512Pedraza C, Castillo J, Martínez JI, Huerta P, Bosque JL, Cano J (2011) Genetic algorithm for Boolean minimization in an FPGA cluster. J Supercomput 58(2):244–252Orlowska-Kowalska T, Kaminski M (2011) FPGA implementation of the multilayer neural network for the speed estimation of the two-mass drive system. IEEE Trans Ind Inf 7(3):436–445Cassidy AS, Merolla P, Arthur JV, Esser SK, Jackson B, Alvarez-icaza R, Datta P, Sawada J, Wong TM, Feldman V, Amir A, Ben-dayan D, Mcquinn E, Risk WP, Modha DS (2013) Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores. In: Proceedings of international joint conference on neural networks, IEEE (IJCNN’2013)IBM Cognitive Computing and Neurosynaptic chips website. http://www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml . Accessed 22 Sept 2014Seo E, Jeong J, Park S, Lee J (2008) Energy efficient scheduling of real-time tasks on multicore processors. IEEE Trans Parallel Distrib Syst 19(11):1540–1552Lehoczky J, Sha L, Ding Y (1989) The rate monotonic scheduling algorithm: exact characterization and average case behavior. In: Proceedings of real time systems symposium, IEEE 1989, pp 166–171Ng-Thow-Hing V, Lim J, Wormer J, Sarvadevabhatla RK, Rocha C, Fujimura K, Sakagami Y (2008) The memory game: creating a human-robot interactive scenario for ASIMO. In: Proceedings of intelligent robots and systems, 2008, IROS 2008, IEEE/RSJ international conference, pp 779–78

    Identification of a Dual-Specific T Cell Epitope of the Hemagglutinin Antigen of an H5 Avian Influenza Virus in Chickens

    Get PDF
    Avian influenza viruses (AIV) of the H5N1 subtype have caused morbidity and mortality in humans. Although some migratory birds constitute the natural reservoir for this virus, chickens may play a role in transmission of the virus to humans. Despite the importance of avian species in transmission of AIV H5N1 to humans, very little is known about host immune system interactions with this virus in these species. The objective of the present study was to identify putative T cell epitopes of the hemagglutinin (HA) antigen of an H5 AIV in chickens. Using an overlapping peptide library covering the HA protein, we identified a 15-mer peptide, H5246–260, within the HA1 domain which induced activation of T cells in chickens immunized against the HA antigen of an H5 virus. Furthermore, H5246–260 epitope was found to be presented by both major histocompatibility complex (MHC) class I and II molecules, leading to activation of CD4+ and CD8+ T cell subsets, marked by proliferation and expression of interferon (IFN)-γ by both of these cell subsets as well as the expression of granzyme A by CD8+ T cells. This is the first report of a T cell epitope of AIV recognized by chicken T cells. Furthermore, this study extends the previous finding of the existence of dual-specific epitopes in other species to chickens. Taken together, these results elucidate some of the mechanisms of immune response to AIV in chickens and provide a platform for creation of rational vaccines against AIV in this species

    The efficacy and safety study of dietary supplement PURIAM110 on non-insulin taking Korean adults in the stage of pre-diabetes and diabetes mellitus: protocol for a randomized, double-blind, placebo-controlled, and multicenter trial-pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes has already become a threat to the nation and the individual due to its high prevalence rates and high medical expenses. Therefore, preventing diabetes at an earlier stage is very important. Despite advances in antidiabetic agents, we have not yet achieved any satisfying results in treating diabetes. Among various treatments, medicinal herbs and supplements for diabetes are reported to show generally good efficacy and safety data. In particular, PURIAM110, a compound from orange fruits and mulberry leaves, is supposed to prevent the progress of type II diabetes mellitus and improve diabetic symptoms. This is the first reported pilot study about the protective effect of the orange fruits and mulberry leaves mixture against pre-diabetes on Korean adults. Based on these positive results of herb-derived components, extended studies of dietary supplements have to be done to suggest confirmative evidences.</p> <p>Methods/Design</p> <p>The efficacy and safety study of PURIAM110 is a double-blinded, placebo-controlled, randomized, and multi-center clinical trial. A total of 45 subjects will participate in this study for 6 weeks.</p> <p>Discussion</p> <p>The present protocol will confirm the efficacy and safety of PURIAM110 for pre-diabetes, suggesting more basic knowledge to conduct further randomized controlled trials (RCT). In addition, PURIAM110 can be an alternative dietary supplemental remedy for diabetes patients.</p> <p>Trial Registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN44779824">ISRCTN44779824</a></p

    Linked read technology for assembling large complex and polyploid genomes

    Get PDF
    Background: Short read DNA sequencing technologies have revolutionized genome assembly by providing high accuracy and throughput data at low cost. But it remains challenging to assemble short read data, particularly for large, complex and polyploid genomes. The linked read strategy has the potential to enhance the value of short reads for genome assembly because all reads originating from a single long molecule of DNA share a common barcode. However, the majority of studies to date that have employed linked reads were focused on human haplotype phasing and genome assembly. Results: Here we describe a de novo maize B73 genome assembly generated via linked read technology which contains ~ 172,000 scaffolds with an N50 of 89 kb that cover 50% of the genome. Based on comparisons to the B73 reference genome, 91% of linked read contigs are accurately assembled. Because it was possible to identify errors with \u3e 76% accuracy using machine learning, it may be possible to identify and potentially correct systematic errors. Complex polyploids represent one of the last grand challenges in genome assembly. Linked read technology was able to successfully resolve the two subgenomes of the recent allopolyploid, proso millet (Panicum miliaceum). Our assembly covers ~ 83% of the 1 Gb genome and consists of 30,819 scaffolds with an N50 of 912 kb. Conclusions: Our analysis provides a framework for future de novo genome assemblies using linked reads, and we suggest computational strategies that if implemented have the potential to further improve linked read assemblies, particularly for repetitive genomes

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Advantages of a Mechanistic Codon Substitution Model for Evolutionary Analysis of Protein-Coding Sequences

    Get PDF
    A mechanistic codon substitution model, in which each codon substitution rate is proportional to the product of a codon mutation rate and the average fixation probability depending on the type of amino acid replacement, has advantages over nucleotide, amino acid, and empirical codon substitution models in evolutionary analysis of protein-coding sequences. It can approximate a wide range of codon substitution processes. If no selection pressure on amino acids is taken into account, it will become equivalent to a nucleotide substitution model. If mutation rates are assumed not to depend on the codon type, then it will become essentially equivalent to an amino acid substitution model. Mutation at the nucleotide level and selection at the amino acid level can be separately evaluated.The present scheme for single nucleotide mutations is equivalent to the general time-reversible model, but multiple nucleotide changes in infinitesimal time are allowed. Selective constraints on the respective types of amino acid replacements are tailored to each gene in a linear function of a given estimate of selective constraints. Their good estimates are those calculated by maximizing the respective likelihoods of empirical amino acid or codon substitution frequency matrices. Akaike and Bayesian information criteria indicate that the present model performs far better than the other substitution models for all five phylogenetic trees of highly-divergent to highly-homologous sequences of chloroplast, mitochondrial, and nuclear genes. It is also shown that multiple nucleotide changes in infinitesimal time are significant in long branches, although they may be caused by compensatory substitutions or other mechanisms. The variation of selective constraint over sites fits the datasets significantly better than variable mutation rates, except for 10 slow-evolving nuclear genes of 10 mammals. An critical finding for phylogenetic analysis is that assuming variable mutation rates over sites lead to the overestimation of branch lengths

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore